Comment on 'Resolving isospectral 'drums' by counting nodal domains'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2007 J. Phys. A: Math. Theor. 4015143
(http://iopscience.iop.org/1751-8121/40/50/N01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:31

Please note that terms and conditions apply.

COMMENT

Comment on 'Resolving isospectral 'drums' by counting nodal domains’

J Brüning, D Klawonn and C Puhle
Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

E-mail: bruening@math.hu-berlin.de, klawonn@math.hu-berlin.de and puhle@math.hu-berlin.de
Received 10 October 2007
Published 28 November 2007
Online at stacks.iop.org/JPhysA/40/15143

Abstract

In Gnutzmann et al (2005 J. Phys. A: Math. Gen. 38 8921-33) the authors studied the 4-parameter family of isospectral flat 4-tori $T^{ \pm}(a, b, c, d)$ discovered by Conway and Sloane. With a particular method of counting nodal domains they were able to distinguish these tori (numerically) by computing the corresponding nodal sequences relative to a few explicit tuples (a, b, c, d). In this note we confirm the expectation expressed in Gnutzmann et al (2005 J. Phys. A: Math. Gen. 38 8921-33) by proving analytically that their nodal count distinguishes any 4-tuple of distinct positive real numbers.

PACS numbers: $02.40 . \mathrm{Vh}, 05.45 . \mathrm{Mt}$
Mathematics Subject Classification: 58J50, 58J53

1. Introduction

In 1964 J Milnor [4] constructed two 16-dimensional non-isometric flat tori with the same spectrum for the Laplace-Beltrami operator on forms of every degree, and thus produced the first example of non-isometric isospectral manifolds. Since then many examples of such manifolds (see for example [1,5] and [2]) have been found and studied.

While it remains unclear to what extent the spectrum of the Laplace-Beltrami operator determines the geometry of the underlying manifold, these examples show that the spectrum does not contain enough information to determine the manifold and its metric uniquely. It has been proposed recently that the nodal count, i.e. the number of nodal domains of the eigenfunctions of the Laplace-Beltrami operator, might provide the missing information, such that the spectrum and nodal count together should yield isometry. Indeed, in [3] the authors used the 4-parameter family of isospectral flat 4-tori $T^{ \pm}(a, b, c, d)$ constructed by Conway and Sloane [2] to show how the isospectrality can be 'resolved' using nodal domains. By counting the latter in a very special way, and then arranging the result in a so-called 'nodal
sequence' they were able to exhibit that these nodal sequences for the tori belonging to four carefully chosen tuples (a, b, c, d) are different, if numerically.

In this work we shall give an alternative and analytic way to show that the nodal sequence defined in [3] distinguishes every pair of isospectral tori in this family if all four parameters are distinct; if at least two of them are equal then the corresponding tori are isometric (cf [2], p 94, Remark 2).

Theorem. For any choice of distinct positive numbers $a, b, c, d \in \mathbb{R}_{+}$the nodal sequences of the tori $T^{+}(a, b, c, d)$ and $T^{-}(a, b, c, d)$ are distinct.

The paper is structured as follows: in section 2 we introduce some facts on flat n-tori, their spectra and eigenfunctions, and define the notions of 'nodal domain' and 'nodal sequence'. We then proceed to introduce the isospectral flat tori of Conway and Sloane in section 3, and eventually prove the theorem stated above.

2. Nodal sequences of flat tori

Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ denote linearly independent vectors and

$$
\Gamma:=\operatorname{span}_{\mathbb{Z}}\left\{v_{1}, \ldots, v_{n}\right\}
$$

the lattice generated by these vectors. The flat torus given by the lattice Γ is

$$
T:=\mathbb{R}^{n} / A \mathbb{Z}^{n}
$$

where the columns of the $(n \times n)$-matrix A consist of the vectors v_{i} :

$$
A=\left[v_{1}, \ldots, v_{n}\right] .
$$

The Gram matrix of T is defined by $G:=A^{\top} A$ and $Q=G^{-1}$ denotes its inverse. The regular matrix Q determines the torus completely, $T=T(Q)$. The dual lattice is

$$
\Gamma^{*}=\operatorname{span}_{\mathbb{Z}}\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}
$$

with $v_{1}^{*}, \ldots, v_{n}^{*}$ the dual basis, $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$.
The Laplace-Beltrami operator Δ on T takes the form

$$
\Delta=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

Its spectrum relative to the torus $T(Q)$ consists only of isolated eigenvalues with finite multiplicity and can be computed explicitly,

$$
\operatorname{spec}_{T}(\Delta)=\left\{4 \pi^{2} q^{\top} Q q: q \in \mathbb{Z}^{n}\right\}
$$

A certain eigenvalue $\lambda \in \operatorname{spec}_{T}(\Delta)$ may correspond to multiple representing vectors, i.e. vectors $q \in \mathbb{Z}^{n}$ satisfying $\lambda=4 \pi^{2} q^{\top} Q q$. The number of distinct representing vectors relative to the eigenvalue λ is called the degeneracy of λ. Thus the degeneracy of a given λ equals the dimension of its eigenspace, a basis of which is given by the functions

$$
\Psi_{q}: T \ni x \longmapsto \exp \left(2 \pi i \sum_{i=1}^{n} q_{i} v_{i}^{*}(x)\right) \in \mathbb{C}
$$

where $q=\left[q_{1}, \ldots, q_{n}\right]^{\top} \in \mathbb{Z}^{n}$ is a representing vector of λ.
Let $f: M \rightarrow \mathbb{R}$ be a function on a compact manifold M. Then the nodal domains of f are defined as the connected components of $M \backslash f^{-1}(0)$, the number of which is finite. Throughout this work we will consider the nodal domains of the real and imaginary parts of
the eigenfunctions Ψ_{q}. We will count these domains in the same way as introduced in [3], which goes as follows: first split Ψ_{q} into its real and imaginary parts,

$$
\Psi_{q}^{\mathrm{re}}(x)=\cos \left(2 \pi \sum_{i=1}^{n} q_{i} v_{i}^{*}(x)\right), \quad \Psi_{q}^{\mathrm{im}}(x)=\sin \left(2 \pi \sum_{i=1}^{n} q_{i} v_{i}^{*}(x)\right) .
$$

Then introduce the transformation

$$
T(Q) \ni x \longmapsto Q^{-1} x=y \in \tilde{T}
$$

onto the standard torus $\tilde{T}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ which gives rise to the Laplace-Beltrami operator

$$
\tilde{\Delta}=-\sum_{i, j} Q_{i j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}
$$

and to the functions

$$
\tilde{\Psi}_{q}^{\mathrm{re}}(y)=\cos \left(2 \pi q^{\top} y\right), \quad \tilde{\Psi}_{q}^{\mathrm{im}}(y)=\sin \left(2 \pi q^{\top} y\right)
$$

The number of nodal domains is, by definition, the number given by lifting these functions to \mathbb{R}^{n} and then counting the nodal domains in the unit cube ignoring identifications at the boundary. The resulting number, which we call the nodal count $v(q)$ for a given vector $q \in \mathbb{Z}^{n}$, is given by the following formula (see [3]):

$$
\nu(q)=\left\{\begin{array}{lll}
2 \sum_{i=1}^{n}\left|q_{i}\right| & \text { for } & \Psi_{q}^{\mathrm{im}} \\
2 \sum_{i=1}^{n}\left|q_{i}\right|+1 & \text { for } & \Psi_{q}^{\mathrm{re}}
\end{array}\right.
$$

Since $T(Q)$ is a compact manifold we are able to arrange its spectrum $\operatorname{spec}_{T}(\Delta)$ in increasing order:

$$
0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{i}<\cdots .
$$

If we compute the nodal count of every vector $q \in \mathbb{Z}^{n}$, a finite set of nodal counts $\left\{v_{1}^{i}, v_{2}^{i}, \ldots\right\}$ belongs to each eigenvalue λ_{i}. The cardinality of this set equals the degeneracy of the corresponding eigenvalue. One obtains the nodal sequence

$$
\left\{\left\{v_{1}^{1}, v_{2}^{1}, \ldots\right\},\left\{v_{1}^{2}, v_{2}^{2}, \ldots\right\}, \ldots,\left\{v_{1}^{i}, v_{2}^{i}, \ldots\right\}, \ldots\right\}
$$

by fitting each subsequence in the same position as the corresponding eigenvalue in the spectrum. By means of this sequence we shall distinguish isospectral tori.

3. The construction of Conway and Sloane

Our work deals with the 4-parameter family of isospectral flat tori $T^{ \pm}(a, b, c, d)$ discovered by Conway and Sloane [2]. As mentioned in the previous section, these tori are described by the inverse $Q^{ \pm}(a, b, c, d)$ of the corresponding Gram matrix. Explicitly,
$Q^{+}=\frac{1}{12}\left[\begin{array}{cccc}9 a+b+c+d & 3 a-3 b-c+d & 3 a+b-3 c-d & 3 a-b+c-3 d \\ 3 a-3 b-c+d & a+9 b+c+d & a-3 b+3 c-d & a+3 b-c-3 d \\ 3 a+b-3 c-d & a-3 b+3 c-d & a+b+9 c+d & a-b-3 c+3 d \\ 3 a-b+c-3 d & a+3 b-c-3 d & a-b-3 c+3 d & a+b+c+9 d\end{array}\right]$,
$Q^{-}=U^{\top} Q^{+} U \quad$ with $\quad U=\frac{1}{2}\left[\begin{array}{cccc}-1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 \\ -1 & 1 & -1 & -1 \\ -1 & -1 & 1 & -1\end{array}\right]$.

The defining parameters a, b, c, d are required to be strictly positive. It is remarked in [2] that the tori T^{+}and T^{-}are equivalent, if two of these parameters are equal. Therefore we shall only consider vectors (a, b, c, d) of pairwise distinct positive numbers. We are now ready for the

Proof of the Theorem. To begin with we define for $m \in \mathbb{N}$ the set

$$
V_{m}:=\left\{\left[q_{1}, q_{2}, q_{3}, q_{4}\right]^{T} \in \mathbb{Z}^{4}: \sum_{i}\left|q_{i}\right|=m\right\} .
$$

This set is obviously finite and contains all vectors $q \in \mathbb{Z}^{4}$ that represent the nodal count $2 m$ or $2 m+1$, according to whether we consider Ψ_{q}^{im} or Ψ_{q}^{re}. We then define

$$
E_{m}^{ \pm}:=\left\{4 \pi^{2} q^{\top} Q^{ \pm} q: q \in V_{m}\right\}
$$

as the set of eigenvalues with a representing vector of nodal count $2 m, 2 m+1$. Thus, if E_{m}^{+} and E_{m}^{-}do not coincide for a certain m, then the nodal sequences of the tori T^{+}and T^{-}are distinct.

The $E_{m}^{ \pm}$'s can be viewed as sets of functions in the variables a, b, c, d. By inspection we obtain equality $\left(E_{m}^{+}=E_{m}^{-}\right)$for $m=1,2,3$. The first interesting case appears for $m=4$, where

$$
\begin{aligned}
E_{4}^{+}= & \left(4 \pi^{2} / 3\right)\{(4 a+25 b+c),(25 a+b+4 c),(a+4 b+25 c), \\
& (b+25 c+4 d),(25 a+4 b+d),(25 b+4 c+d), \\
& (4 a+25 c+d),(4 a+b+25 d),(a+25 b+4 d), \\
& (25 a+c+4 d),(4 b+c+25 d),(a+4 c+25 d), \\
& (4 a+16 b+9 c+d),(9 a+4 b+16 c+d), \\
& (16 a+9 b+4 c+d),(9 a+16 b+c+4 d), \\
& (16 a+b+9 c+4 d),(16 a+4 b+c+9 d), \\
& (a+16 b+4 c+9 d),(4 a+b+16 c+9 d), \\
& (4 a+9 b+c+16 d),(a+4 b+9 c+16 d), \\
& (a+9 b+16 c+4 d),(9 a+b+4 c+16 d)\} \cup\left(E_{4}^{+} \cap E_{4}^{-}\right), \\
E_{4}^{-}= & \left(4 \pi^{2} / 3\right)\{(25 a+4 b+c),(a+25 b+4 c),(4 a+b+25 c), \\
& (4 a+25 b+d),(25 a+4 c+d),(4 b+25 c+d), \\
& (25 a+b+4 d),(25 b+c+4 d),(a+25 c+4 d), \\
& (a+4 b+25 d),(4 a+c+25 d),(b+4 c+25 d), \\
& (9 a+16 b+4 c+d),(16 a+4 b+9 c+d), \\
& (4 a+9 b+16 c+d),(16 a+9 b+c+4 d), \\
& (a+16 b+9 c+4 d),(4 a+16 b+c+9 d), \\
& (16 a+b+4 c+9 d),(a+4 b+16 c+9 d), \\
& (9 a+4 b+c+16 d),(4 a+b+9 c+16 d), \\
& (9 a+b+16 c+4 d),(a+9 b+4 c+16 d)\} \cup\left(E_{4}^{+} \cap E_{4}^{-}\right) .
\end{aligned}
$$

Inspecting the sets E_{4}^{+}and E_{4}^{-}more carefully one notes that there are two sets of coefficients, namely $(1,4,9,16)$ and $(0,1,4,25)$, such that E_{4}^{+}contains all even permutations of the
variables a, b, c, d in the linear forms with these coefficients while E_{4}^{-}contains the odd ones. Hence we may assume that $a<b<c<d$ and obtain a unique maximum among all elements of $E_{4}^{+} \cup E_{4}^{-}$, namely $b+4 c+25 d$. Consequently $E_{4}^{+} \neq E_{4}^{-}$, as claimed.

Acknowledgments

We want to thank Uzy Smilansky for discussions and both the German-Israeli Foundation GIF and the SFB 647: Space-Time-Matter for financial support.

References

[1] Buser P, Conway J, Doyle P and Semmler K-D 1994 Int. Math. Res. Not. 9 391-9
[2] Conway J and Sloane N 1992 Int. Math. Res. Not. 4 93-6
[3] Gnutzmann S, Smilansky U and Sondergaard N 2005 J. Phys. A: Math. Gen. 38 8921-33
[4] Milnor J 1964 Proc. Natl Acad. Sci. USA 51542
[5] Sunada T 1985 Ann. Math. 2121 169-86

