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Abstract
In Gnutzmann et al (2005 J. Phys. A: Math. Gen. 38 8921–33) the authors
studied the 4-parameter family of isospectral flat 4-tori T ±(a, b, c, d)

discovered by Conway and Sloane. With a particular method of counting nodal
domains they were able to distinguish these tori (numerically) by computing
the corresponding nodal sequences relative to a few explicit tuples (a, b, c, d).
In this note we confirm the expectation expressed in Gnutzmann et al (2005
J. Phys. A: Math. Gen. 38 8921–33) by proving analytically that their nodal
count distinguishes any 4-tuple of distinct positive real numbers.

PACS numbers: 02.40.Vh, 05.45.Mt
Mathematics Subject Classification: 58J50, 58J53

1. Introduction

In 1964 J Milnor [4] constructed two 16-dimensional non-isometric flat tori with the same
spectrum for the Laplace–Beltrami operator on forms of every degree, and thus produced
the first example of non-isometric isospectral manifolds. Since then many examples of such
manifolds (see for example [1, 5] and [2]) have been found and studied.

While it remains unclear to what extent the spectrum of the Laplace–Beltrami operator
determines the geometry of the underlying manifold, these examples show that the spectrum
does not contain enough information to determine the manifold and its metric uniquely. It
has been proposed recently that the nodal count, i.e. the number of nodal domains of the
eigenfunctions of the Laplace–Beltrami operator, might provide the missing information, such
that the spectrum and nodal count together should yield isometry. Indeed, in [3] the authors
used the 4-parameter family of isospectral flat 4-tori T ±(a, b, c, d) constructed by Conway
and Sloane [2] to show how the isospectrality can be ‘resolved’ using nodal domains. By
counting the latter in a very special way, and then arranging the result in a so-called ‘nodal
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sequence’ they were able to exhibit that these nodal sequences for the tori belonging to four
carefully chosen tuples (a, b, c, d) are different, if numerically.

In this work we shall give an alternative and analytic way to show that the nodal sequence
defined in [3] distinguishes every pair of isospectral tori in this family if all four parameters
are distinct; if at least two of them are equal then the corresponding tori are isometric (cf [2],
p 94, Remark 2).

Theorem. For any choice of distinct positive numbers a, b, c, d ∈ R+ the nodal sequences of
the tori T +(a, b, c, d) and T −(a, b, c, d) are distinct.

The paper is structured as follows: in section 2 we introduce some facts on flat n-tori, their
spectra and eigenfunctions, and define the notions of ‘nodal domain’ and ‘nodal sequence’.
We then proceed to introduce the isospectral flat tori of Conway and Sloane in section 3, and
eventually prove the theorem stated above.

2. Nodal sequences of flat tori

Let v1, . . . , vn ∈ R
n denote linearly independent vectors and

� := spanZ
{v1, . . . , vn}

the lattice generated by these vectors. The flat torus given by the lattice � is

T := R
n/AZ

n,

where the columns of the (n × n)-matrix A consist of the vectors vi :

A = [v1, . . . , vn].

The Gram matrix of T is defined by G := A�A and Q = G−1 denotes its inverse. The regular
matrix Q determines the torus completely, T = T (Q). The dual lattice is

�∗ = spanZ{v∗
1 , . . . , v

∗
n},

with v∗
1 , . . . , v

∗
n the dual basis, v∗

i (vj ) = δij .
The Laplace–Beltrami operator � on T takes the form

� = −
n∑

i=1

∂2

∂x2
i

.

Its spectrum relative to the torus T (Q) consists only of isolated eigenvalues with finite
multiplicity and can be computed explicitly,

specT (�) = {4π2q�Qq : q ∈ Z
n}.

A certain eigenvalue λ ∈ specT (�) may correspond to multiple representing vectors, i.e.
vectors q ∈ Z

n satisfying λ = 4π2q�Qq. The number of distinct representing vectors
relative to the eigenvalue λ is called the degeneracy of λ. Thus the degeneracy of a given λ

equals the dimension of its eigenspace, a basis of which is given by the functions

�q : T � x �−→ exp

(
2πi

n∑
i=1

qiv
∗
i (x)

)
∈ C

where q = [q1, . . . , qn]� ∈ Z
n is a representing vector of λ.

Let f : M → R be a function on a compact manifold M. Then the nodal domains of
f are defined as the connected components of M\f −1(0), the number of which is finite.
Throughout this work we will consider the nodal domains of the real and imaginary parts of
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the eigenfunctions �q . We will count these domains in the same way as introduced in [3],
which goes as follows: first split �q into its real and imaginary parts,

�re
q (x) = cos

(
2π

n∑
i=1

qiv
∗
i (x)

)
, � im

q (x) = sin

(
2π

n∑
i=1

qiv
∗
i (x)

)
.

Then introduce the transformation

T (Q) � x �−→ Q−1x = y ∈ T̃

onto the standard torus T̃ = R
n/Z

n which gives rise to the Laplace–Beltrami operator

�̃ = −
∑
i,j

Qij

∂2

∂yi∂yj

and to the functions

�̃re
q (y) = cos(2πq�y), �̃ im

q (y) = sin(2πq�y).

The number of nodal domains is, by definition, the number given by lifting these functions
to R

n and then counting the nodal domains in the unit cube ignoring identifications at the
boundary. The resulting number, which we call the nodal count ν(q) for a given vector
q ∈ Z

n, is given by the following formula (see [3]):

ν(q) =
{

2
∑n

i=1 |qi | for � im
q

2
∑n

i=1 |qi | + 1 for �re
q .

Since T (Q) is a compact manifold we are able to arrange its spectrum specT (�) in increasing
order:

0 < λ1 < λ2 < · · · < λi < · · · .
If we compute the nodal count of every vector q ∈ Z

n, a finite set of nodal counts
{
νi

1, ν
i
2, . . .

}
belongs to each eigenvalue λi . The cardinality of this set equals the degeneracy of the
corresponding eigenvalue. One obtains the nodal sequence{{

ν1
1 , ν

1
2 , . . .

}
,
{
ν2

1 , ν
2
2 , . . .

}
, . . . ,

{
νi

1, ν
i
2, . . .

}
, . . .

}
by fitting each subsequence in the same position as the corresponding eigenvalue in the
spectrum. By means of this sequence we shall distinguish isospectral tori.

3. The construction of Conway and Sloane

Our work deals with the 4-parameter family of isospectral flat tori T ±(a, b, c, d) discovered
by Conway and Sloane [2]. As mentioned in the previous section, these tori are described by
the inverse Q±(a, b, c, d) of the corresponding Gram matrix. Explicitly,

Q+ = 1

12

⎡
⎢⎢⎣

9a + b + c + d 3a − 3b − c + d 3a + b − 3c − d 3a − b + c − 3d

3a − 3b − c + d a + 9b + c + d a − 3b + 3c − d a + 3b − c − 3d

3a + b − 3c − d a − 3b + 3c − d a + b + 9c + d a − b − 3c + 3d

3a − b + c − 3d a + 3b − c − 3d a − b − 3c + 3d a + b + c + 9d

⎤
⎥⎥⎦ ,

Q− = U�Q+U with U = 1

2

⎡
⎢⎢⎣

−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1

⎤
⎥⎥⎦ .
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The defining parameters a, b, c, d are required to be strictly positive. It is remarked in [2] that
the tori T + and T − are equivalent, if two of these parameters are equal. Therefore we shall
only consider vectors (a, b, c, d) of pairwise distinct positive numbers. We are now ready for
the

Proof of the Theorem. To begin with we define for m ∈ N the set

Vm :=
{

[q1, q2, q3, q4]T ∈ Z
4 :

∑
i

|qi | = m

}
.

This set is obviously finite and contains all vectors q ∈ Z
4 that represent the nodal count 2m

or 2m + 1, according to whether we consider � im
q or �re

q . We then define

E±
m := {4π2q�Q±q : q ∈ Vm}

as the set of eigenvalues with a representing vector of nodal count 2m, 2m + 1. Thus, if E+
m

and E−
m do not coincide for a certain m, then the nodal sequences of the tori T + and T − are

distinct.
The E±

m’s can be viewed as sets of functions in the variables a, b, c, d. By inspection we
obtain equality

(
E+

m = E−
m

)
for m = 1, 2, 3. The first interesting case appears for m = 4,

where

E+
4 = (4π2/3){(4a + 25b + c), (25a + b + 4c), (a + 4b + 25c),

(b + 25c + 4d), (25a + 4b + d), (25b + 4c + d),

(4a + 25c + d), (4a + b + 25d), (a + 25b + 4d),

(25a + c + 4d), (4b + c + 25d), (a + 4c + 25d),

(4a + 16b + 9c + d), (9a + 4b + 16c + d),

(16a + 9b + 4c + d), (9a + 16b + c + 4d),

(16a + b + 9c + 4d), (16a + 4b + c + 9d),

(a + 16b + 4c + 9d), (4a + b + 16c + 9d),

(4a + 9b + c + 16d), (a + 4b + 9c + 16d),

(a + 9b + 16c + 4d), (9a + b + 4c + 16d)} ∪ (
E+

4 ∩ E−
4

)
,

E−
4 = (4π2/3){(25a + 4b + c), (a + 25b + 4c), (4a + b + 25c),

(4a + 25b + d), (25a + 4c + d), (4b + 25c + d),

(25a + b + 4d), (25b + c + 4d), (a + 25c + 4d),

(a + 4b + 25d), (4a + c + 25d), (b + 4c + 25d),

(9a + 16b + 4c + d), (16a + 4b + 9c + d),

(4a + 9b + 16c + d), (16a + 9b + c + 4d),

(a + 16b + 9c + 4d), (4a + 16b + c + 9d),

(16a + b + 4c + 9d), (a + 4b + 16c + 9d),

(9a + 4b + c + 16d), (4a + b + 9c + 16d),

(9a + b + 16c + 4d), (a + 9b + 4c + 16d)} ∪ (
E+

4 ∩ E−
4

)
.

Inspecting the sets E+
4 and E−

4 more carefully one notes that there are two sets of coefficients,
namely (1, 4, 9, 16) and (0, 1, 4, 25), such that E+

4 contains all even permutations of the
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variables a, b, c, d in the linear forms with these coefficients while E−
4 contains the odd ones.

Hence we may assume that a < b < c < d and obtain a unique maximum among all elements
of E+

4 ∪ E−
4 , namely b + 4c + 25d. Consequently E+

4 	= E−
4 , as claimed. �
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